ESTIMATION OF REAL-TIME ORIGIN-DESTINATION FLOW USING MOBILE SENSOR NETWORK

Zijia (Gary) Zhong Joyoung Lee, Ph.D

NEWARK COLLEGE OF ENGINEERING

Presentation Agenda

- Introduction
- O-D Estimation Techniques Overview
- Proposed Estimation Framework
- Preliminary Results
- Future Study

Introduction

Origin-destination (O-D) demand

- represents the travel demand of people in the transportation network
- is the corner stone of sound transportation planning
- is the vital part of dynamic traffic management

Conventional O-D estimation techniques

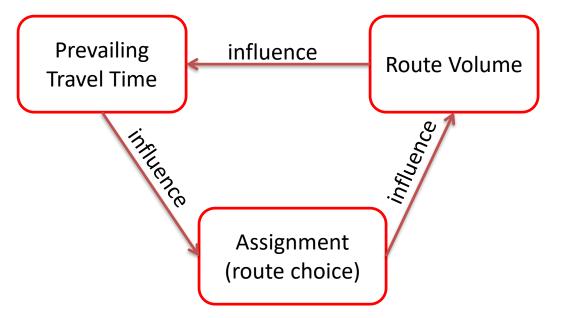
- Large scale survey
- Demand modeling based on socioeconomic characteristics

OD estimation technique based on link flow

Estimation from network traffic flows

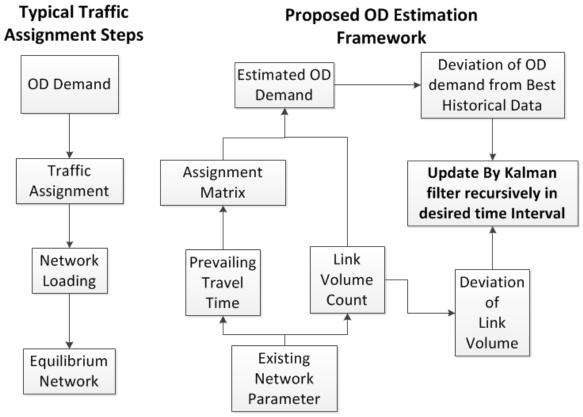
$$V_l^k = \sum_i \sum_j D_{ij}^k p_{ij}^{lk} \qquad (0 < p_{ij}^{lk} < 1)$$

 V_l^k -traffic volume on link l at kth time interval


 D_{ii}^k -demand from origin i to destination j at kth time interval

 p_{ij}^{lk} -portion of the demand from i to j assigned to link l at kth time interval

Research Motivation


- Dynamic O-D estimations in academic realm typically suffer high computational expenses and therefore are not quite suitable for practical implementation.
- With the emergence of advanced ITS devices(e.g. Bluetooth Readers, RTMS's), a practical analytical framework with reduced calculations could be developed for operation management purpose.
- The ever-increasing needs for a better and more comprehensive work zone monitoring and impact study (e.g. NJDOT I-295 Direct Connect Project).

Module Interaction under Dynamic Traffic Assignment Scheme

- Road user plan their route largely based on travel time.
- The route volume is the result of route choice
- The route volume affect the prevailing travel time
- The recursive updating nature of Kalman Filter is suitable for this framework

Proposed Analytical Framework

- Bluetooth readers provide travel time information
- Route choice is derived from travel time information
- RTMS's provide volume counts

Recursive Kalman Filter

Prediction Step:

Updating Step:

$$x_{ij}(t+1) - x_{ij}^{H}(t+1) = B_{t} [x_{ij}(t) - x_{ij}^{H}(t)] + w(t) \quad (1)$$

$$y_{l}(t) - y_{l}^{H}(t) = A_{t} [x_{ij}(t) - x_{ij}^{H}(t)] + v(t) \quad (2)$$

 $x_{ij}(t)$ -demand in t time interval from origin i to destination j

 $x_{ij}^{H}(t)$ -histircal or outdated demand in t time interval from origin i to destination j $y_{l}(t)$ -real-time link volume counts vector

 y_l^H (t)-historical link volume counts vector

 B_t -state transition matrix between two sequential time intervals t and t+1

 A_t -assignment matrix at time interval t

w(t)-random error of prediction

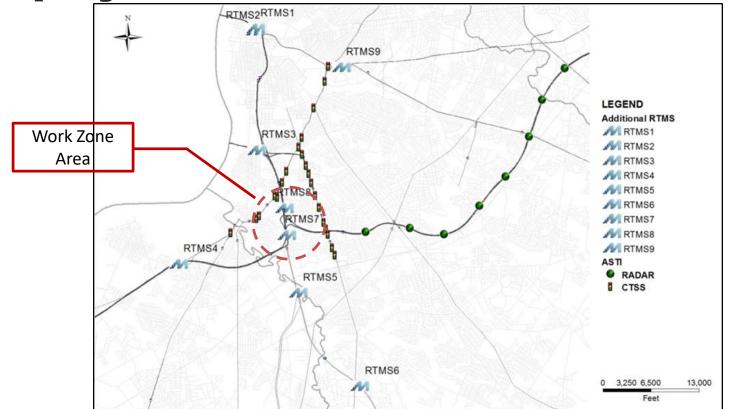
v(t)- random error of field measurment

Advantages of the Proposed Framework

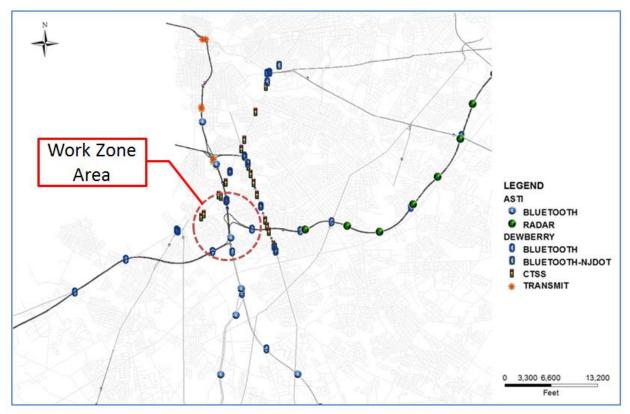
- Different sources of real-time traffic flow information are incorporated and utilized.
- Only the most-travelled routes in the network are considered in order to reduce the computational expenses.
- The estimation result will be evaluated and compare to historical results to ensure the consistency and accuracy of the estimation.
- The three modules are relatively independent, therefore each can be substituted with other assignment modules or data collection modules.

Disadvantage of the Proposed Framework

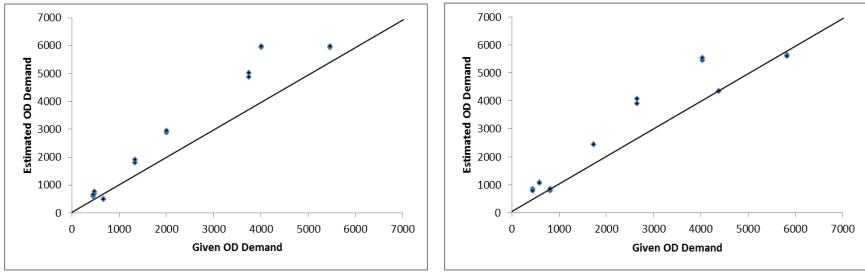
- Errors may occur due to the approximation applied under low market penetrations of Bluetooth devices.
- Need more time and efforts for model calibration due to a case-by-case basis when it comes to implementation.
- Engineering judgment of network travel pattern can affect the accuracy of the model.


2014 ITS World Congress, Detroit MI, USA

Proof-of-Concept Test for I-295 Work Zone Monitoring


- The proposed framework will be tested for I-295 Direct Connect roadway reconfiguration work zone.
- ITS device installation is currently in progress, while experiencing delays.

Deployment Plan of RTMS's



Deployment Plan of Bluetooth Readers

2014 ITS World Congress, Detroit MI, USA

Preliminary Results from Simulation Test Bed

O-D demand estimated for 3:00 to 4:00pm

- Each point represents one pair of O-D demand
- Kalman Filter was not yet implemented in the test

O-D demand estimated for 4:00 to 5:00pm

Future Study

- Modular enhancement (e.g. route travel time estimation based on partly knowledge of the route travel time)
- Application upon receipt of the field data.
- Comprehensive evaluation of the estimation results.
- Investigation its application under congested network.

THANK YOU FOR YOUR ATTENTION QUESTIONS?