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Background

» Cooperative adaptive cruise control
(CACC) is expected to drastically increase
mobility, decrease emission, while
providing a safer and more convenient
ride for occupants.

» (ACC enables closely coupled vehicular
platoon by extra layers of communication
and automation.

» CACC-equipped vehicles are expected to
deployed in the public road in the near
term alongside with conventional vehicles.




Motivation

» Near-term deployment in mixed traffic condition is likely to be an
reality

» The potential impact on non-equipped vehicles (i.e. Human-
driven vehicles(HVs)) has rarely been investigated, given
consensus of CAV's potential benefits.

» The majority of the studies focused on longitudinal movement of
CACC, with less attentions of the lateral movement, especially
when it comes to platoon formation.




CAYV Platoon Organization

» Ad hoc coordination: no
coordination among CAVs. CAV
distribution based on arrival pattern.

» Local coordination: free-agent CAV
ctively seeks and form platoons

Global coordination: coordination
at origin-designation (OD) level prior
to entering the highway

Potential Negative Impact

i. The induced weaving during platoon formation

ii. Induced lane changing for HVs due to weaving J

iii. Lane blockage for HVs by platoons Y’ j\(**"j{ }
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Study Method

CACC | new traffic flow
vehicles . human driver ; ' characteristics
behavioral model 5 . (especially for flow

vehicle pool _ ! * of HVs)

study focus

» Various mixed traffic flow scenarios and CAV models act as the
stimuli

» The calibrated Wiedemann behavior model acts as a black box

» Measure the resultant traffic flow characteristics at individuadl
vehicle level



Simulation Framework

» The network was calibrated
with field traffic data (video,
traffic sensor, INRIX tfravel fime)
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» The |-66 network has been
used in multiple studies
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RTMS #2

8-km stretch 4-lane highway

with 2 inferchanges
» A 30% growth of current traffic

demand is assumed. Description Demand, | HOV Demand,
vph vph

I-66 East 5456 2451
L2 Exit 62 Nutley St. 924 436
L3 Exit 60 SR 123 1834 1483

4 I-66 West - -




CAYV Behavior
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X- position of a vehicle

» |nter-platoon headway: 0.9 s a-max. acceleration

» |ntra-platoon headway: 0.6 s b- desired deceleration
. . C- coolness factor
» ofher parameters as in (Kesting et al. 2010) T- desired time gap
» SAE Lv. 2 automation is assumed 6- free acceleration exponent

O- Heaviside function



Result- Network Performance
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Result- Hard Braking Events (HV-HV)
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» Hard braking observations were recorded when the acceleration
of a vehicle is less than -3 m/s/s

» Only breaking for HVs when reacting to other HVs is shown

» The breaking decrease is due to decrease in the HV pool. The linear
trend infers that the hard braking remains at the same level




Result- Hard Braking Events (HV-CAV)
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» The CDF curves show two distinct patterns for HVs when interacting to
CAVs. CDF curves of the local coordination are more sensitive to MPR

» The occurrence of hard braking event keeps at the same level in ad
hoc coordination; whereas the occurrence of coordination strategy
shows an increasing trend unftil 30% MPR where the value peaks.

» 30% MPR is a turning point for frequency of the hard breaking event




Lane Change Activity (HVs)

» Only lane change activity for HVs 50000 6.00
are shown

» At 10% and 20% MPR, local
coordination strategy shows a higher
erage lane change frequency.
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»/The average lane change
frequency peaks at 30% for
Coordination and at 40% for Ad hoc 10000

» At 40% MPR, two strategies have the 0
same level of total lane change
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Conclusions

» While re-affirming the benefits of CAV, adapting local
coordination can further increase the benefits.

» The distribution of the hard-braking observation for HVs,
when interacting with CAVs, change substantially with
local coordination strategy for platoon formation

» The average lane change for HVs increases with the
presence of CAVs until 30% MPR in local coordination
case. Such trend was not observed in the ad hoc
coordination case.

» |ncorporation of human factor when designing a CAV
clustering algorithm is highly recommended.




Future Research

» Fvaluate platoon formation in mixed traffic

(vehicle-vehicle, vehicle-platoon, platoon- T
p | O 'I'O O n ) vehicles] iz platoons:
» Heterogeneous platoon formation (e.g. HV-
CAYV platoon)
=/ Quantify the aggressiveness of the lane o
change for CAVs when forming a platoon LR e
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