Alternative Intersection Designs with Connected and Automated Vehicle

Zijia Zhong, National Renewable Energy Laboratory Earl E. Lee II, University of Delaware

Background

Safety

- 1.35 million people die each year as a result of traffic accidents since 2016
- intersection related crashes account for 36% and 43% in the U.S and EU27 countries, respectively
- Mobility
 - 6.9 billion hours of travel delay
 - \$160 billion congestion cost
- Environment
 - 3.1 billion gallons of fuel wasted
 - 60 billion pounds of additional CO2

Tackling Intersection Congestion

- Optimize signal timing and phase (SPaT) plans
 - Geometric reconfiguration
 - grade-separated interchange
 - alternative intersection design (AID)
 - Adopt CAV technology (V2I intersection advisory, ecodriving, autonomous intersection management, etc.)

Alternative Intersection Designs

- Alternative geometric configuration
 - Change conflict point composition
 - Streamline traffic movements
 - Reduce signal phases

Conventional 4-leg intersection

Displaced left-turn intersection

CAV-AID Deployment in the Near Term

- 25-30 yrs. for CAVs to reach 95% penetration (Volpe National Transportation Center)
- AlDs have been growing steadily and gained recognition
- The driver's confusion could be remedied even with early-stage CAV technology
- A hybrid solution (CAV + AID) is one of the logical steps in the near term under mixed traffic conditions

DDI-Diverging diamond interchange RCUT-restricted crossover U-turn DLT-displaced left-turn, MUT-median U-turn, RDT-roundabout

Benefits of CAV and AID

Benefit	AID	CAV
Intersection conflict pt. reduction	Y	
Signal phase reduction	Y	
Streamline traffic movement	Y	
Short following headway		Y
No start-up lost time		Y
Synchronously discharge		Y
Driver's confusion prevention		Y

Simulation Study for DDI

- Two improvements for mobility
 - Conversion to DDI from CDI
 - Introduction of CAV
- DDI interchange at State Highway 72 (DE-72) and US Highway 13 (US-13)
- Simulation conducted in PTV Vissim with its Driver Model API

	CDI	DDI	CAV	MPR
Base-CDI	✓			0%
Base-DDI		✓		0%
CAV-CDI	✓		✓	10%-100%
CAV-DDI		✓	✓	10%-100%

Simulation scenarios

Simulation network

	Longitudinal Control	Lateral Control
Human Driver	Calibrated Wiedemann 99	Vissim default
CAV	Intelligent Driver Model (IDM)	Vissim default
	Vehicle behavic	or

Simulation Study for R-CUT

- Assess the Impact of driver's confusion
- Traffic sensors placed at three locations: upstream, diverging, and downstream location
- Behavior caused by driver's confusion
 - Sudden slow-down at the ramp pocket lane (diverging area)
 - Abrupt lane change as approaching the end of the pocket lane

Case	CAV	Percentage of confused drivers
1		5%-20%
2	\checkmark	0%

Simulation scenarios

Simulation network

Results-DDI Mobility

- With DDI, the intersection throughput increases to 5,350 vehicle per hour (vph) from 4,400 vph, with decrease in deviation.
- CAV contributes less to the increase in intersection throughput at tested scenarios

- The average vehicle delay has similar trends.
- The DDI offers a systematic reduction (40 s per vehicle) with less deviation.

Results-RCUT Traffic Flow

- Flow-speed characteristic is observed at upstream, diverging, and downstream locations.
- The performance increase at the diverging and downstream location with CAV
- The segment carrying capacity increased to 2,100 vph per lane (from 1,500 vph per lane).

Results-RCUT Traffic Flow

- Behavior induced by driver's confusion
 - Sudden slow down
 - Abrupt lane change
- A 250-m section extracted from the diverging area
- The shockwave was created due to the induced behaviors

Results-Impact of Driver's Confusion

- ANOVA test with post-hoc Tukey's method at 95% confidence level
- The pairwise difference among the 5 levels (0% - 20%) of confused driver for DDI and RCUT
- The difference in average vehicle delay are statistically significant.

TABLE IV: ANOVA Test for Average Vehicle Delay in RCUT

Confused Driver Rate	Ν	Delay, s/veh	Grouping	g		
0%	360	12.2	А			
5%	360	28.65	В			
10%	360	39.36		C		
15%	360	43.45			D	
20%	360	48.79				Е

TABLE V: ANOVA Test for Average Vehicle Delay in DDI

Confused Driver Rate	te N Delay, s/veh		Grouping			
0%	360	81.42	Α			
5%	360	82.44	ł	3		
10%	360	83.54		С		
15%	360	84.41			D	
20%	360	85.78				E

Conclusions

- Mobility
 - DDI: The introduction of CAV only increase the throughput by 7% for CDI and 2% for DDI
 - DDI: The conversion to DDI provides 20% throughput increase (4,400 vph to 5,350 vph)
 - RCUT: A flow-stable region in the speed-flow curve with higher capacity (1,500 vph/ln to 2,000 vph/ln)
- Drivers' confusion
 - Significant impact was observed for avg. delay in the presence of driver's confusion.

Future Research

- SPat optimization for AIDs
- Optimization of CAV operation: eco-driving, V2I integration, adaptive signal control, signal-free autonomous intersect management
- Validate drivers' confusion with field data
- Simulation scope: expand evaluation scope to corridor- and network-level

Thank you for your time!

Contact:

Zijia (Gary) Zhong, Ph.D. Postdoctoral Researcher National Renewable Energy Laboratory zijia.zhong@nrel.gov

Earl E. Lee, Ph.D. Assistant Professor University of Delaware <u>elee@udel.edu</u>