
 Test the MOOP CACC algorithm in a realistic 
network

 Explore different deployment strategies (e.g. HOV-
priority access, dedicated lane) 

 Evaluate the algorithm under imperfect wireless 
communication environment (e.g. package drop)

Since the USDOT’s announcement of the Connected
Vehicle (CV) initiative in 2002, automated longitudinal
vehicle control technology has gained increasing
attentions. Cooperative Adaptive Cruise Control (CACC),
as an evolved control schema of currently available ACC in
the market, was made possible under CV environment by
adding an extra communication layer where equipped
vehicles are capable of exchanging their instantaneous
driving information (e.g. position, speed, and acceleration
rate).

This study puts forward a multi-objective optimization
(MOOP) CACC simulation framework by employing
MATLAB genetic algorithm (GA) optimization toolbox.
Microscopic simulation test bed was developed using
VISSIM. Under the assumption of perfect V2V
communication environment at this, the instantaneous
vehicular information, collected by VISSIM COM interface,
was fed into the MOOP controller, which in return
provides optimal acceleration for each individual vehicle
within a platoon in each CACC updating interval.

Introduction

V2V communication of vehicular information among 
neighboring equipped vehicles

Greater string stability compared to ACC
Enhanced mobility and safety performance 
More comfortable riding experience
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Advantages of CACC

Future Research

Simulation Test Bed Preliminary Results

Research Objective

Conclusions

Preliminary results show the MOOP CACC controller

 is able to converge to a set of optimal acceleration 
rates for the entire platoon in each iteration

 can greatly improve string stability by maintained 
the targeted headway under disturbances 

 is also suitable for evaluations of other CV 
applications

To develop a multi-objective optimization algorithm for 
optimal intra-platoon vehicular control 

To build a simulation test bed that suits CACC evaluation 
as well as other CV applications

To validate the performance of the 
proposed   multi-objective control algorithm. 
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Multi-objective Optimization

Multi-objective Genetic Algorithm (GA) was employed to 
solve the optimization problem, which is comprised of 
four objectives: 
 Target Headway Deviation

 Critical Following Condition

 Vehicular Jittering

 Fuel Consumption
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V2V communication for Vehicular Info. 
(e.g. speed, headway, acceleration)

CACC Mode CACC Mode CACC Mode CACC Mode

Proof-of-Concept Test

Under the assumption of perfect wireless V2V 
communication, we used a hypothetical one-lane 
freeway segment to conduct the simulation test. 
VISSIM built-in driving model was considered as 
human driver for comparison. The leading vehicle was 
controlled by a per-defined speed profile.

Vehicular Platoon Behaviors Comparison

Objective Value Comparison
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Controller vehicle Mean (second) Difference to Target 
Headway

Std. Deviation

MOOP-CACC 4th vehicle 1.3997 -0.0003 0.00254
5th vehicle 1.3999 -0.0001 0.00820

Human 4th vehicle 1.5585 0.1585 0.0685
5th vehicle 1.6191   0.2191 0.1323   


