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Automated longitudinal control technology has been tested through 
cooperative adaptive cruise control (CACC), which is envisioned to 
improve highway mobility drastically by forming a vehicle platoon 
with short headway while maintaining stable traffic flow under distur
bances. Compared with previous research efforts with the pseudomulti
objective optimization process, this paper proposes an automated 
longitudinal control framework based on multiobjective optimization 
(MOOP) for CACC by taking into consideration four optimization 
objectives: mobility, safety, driver comfort, and fuel consumption. Of 
the target time headways that have been tested, the proposed CACC 
platoon control method achieved the best performance with 0.9 and 
0.6s target time headways. Compared with a nonoptimizationbased 
CACC, the MOOP CACC achieved 98%, 93%, 42%, and 33% objec
tive value reductions of time headway deviation, unsafe condition, 
jitter, and instantaneous fuel consumption, respectively. In com
parison with a singleobjectiveoptimizationbased approach, which 
optimized only one of the four proposed objectives, it was shown 
that the MOOPbased CACC maintained a good balance between all  
of the objective functions and achieved Pareto optimality for the 
entire platoon.

According to the 2012 Urban Mobility Report, roadway conges-
tion in the United States has caused significant negative effects 
(approximately 5.5 billion extra hours, 2.9 billion gal of wasted 
fuel, and 56 billion lb of additional carbon dioxide) (1). All of 
these negative effects resulted in a US$121 billion bill in 2011. 
Necessary steps making the surface transportation smarter, safer, 
and greener need to be taken. It is believed that a more efficient 
surface transportation system could be achieved via connected 
vehicle (CV) technologies, owing to the rapid advancement of 
information and communication technologies. CV technologies 
have gained increasing traction for their promising capability to 
drastically enhance the performance of the transportation system. 
The Intelligent Transportation Systems Joint Program Office in 

the U.S. Department of Transportation initiated the 6-year CV 
Pilot Deployment Program in 2013 (2). And recently, the depart-
ment has established two primary strategic priorities: realizing 
CV implementation and advancing automation (3).

Of the applications of the advanced driver assistance system, 
the adaptive cruise control (ACC) system has been extensively 
studied. Typically, ACC uses a proportional derivative algorithm, 
which controls the acceleration of a following vehicle on the basis 
of the bumper-to-bumper gap and relative speed with respect to the 
preceding vehicle (4). Lidar or other sensing technologies are adopted 
to obtain the necessary data. Powered by dedicated short-range 
radio, two-way vehicle-to-infrastructure or vehicle-to-vehicle (V2V) 
wireless communication is available for transmitting instantaneous 
vehicular information (e.g., speed, distance headway, and accelera-
tion) under the CV environment. Hence, cooperative adaptive cruise 
control (CACC) can be considered as an evolution of commercially 
available ACC with an additional layer of connectivity. By forming 
a cooperative vehicular platoon with a short intraplatoon time head-
way (e.g., 0.9 s), CACC promises to drastically improve highway 
mobility.

As CACC technology has become more and more mature, a 
systemwide optimal controlling scheme for CACC platooning has 
become crucial in ensuring the full use of the technology. That is, 
a realistic and practical method should consider the major aspects 
(e.g., mobility performance, safety performance, and environmental 
impact) of vehicular longitudinal control in a dynamic traffic con-
text. Furthermore, it also should be generic such that a great variety 
of objectives could be seamlessly incorporated. Non-optimization (5) 
or pseudomultiobjective optimization (6, 7) is somehow inadequate in 
providing such generality, as well as flexibility. To tackle that issue, 
this paper proposes a multi objective optimization-based framework 
to determine optimal driving maneuvers for CACC [also known 
as multiobjective optimization (MOOP) CACC] in the automated 
platooning condition. The proposed MOOP CACC method is able 
to adopt a wide range of objectives and find multiple trade-off opti-
mal solutions with vehicular information disseminated under the  
connected–automated vehicle environment.

The rest of this paper is organized as follows. The current state 
of CACC research, as well as the optimization-based algorithm, 
is summarized next. The research gap for approaching CACC in 
the traffic engineering perspective is identified subsequently. The 
proposed vehicle control algorithm is then discussed, followed by 
the simulation study. Concluding remarks and future research are 
presented in the final section.
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Van Arem et al. proposed a metamodel (i.e., sustainable mobility 
methods for the intelligent transport systems integrated full-range 
speed assistant), which supported the development of the advanced 
driver assistance system in the assessment of technical functionality 
(8). Three advanced driver assistance system models were derived 
from the metamodel: (a) an ACC algorithm, (b) a time headway 
CACC algorithm, and (c) an average-speed CACC algorithm. Safety, 
string stability, and a comfort measure were used to evaluate the 
performance of these algorithms. Simulation and real-world experi-
ments have demonstrated the successful implementation according 
to expectations.

Wang et al. developed a rolling horizon control framework, under 
which different control objects were optimized (4). The framework 
included an enhanced predictive ACC algorithm, with an explicit 
safety mechanism and a fuel consumption objective function, and 
two multianticipative CACC algorithms: one with perfect knowl-
edge of a following car and one without (3, 4). The authors reported 
that the cooperation between equipped vehicles and human drivers 
could dampen traffic disturbances in acceleration and increase the 
queue discharging rate.

Incorporating the power output of the preceding vehicle, an 
extended intelligent driver model was proposed by Li et al. (9). 
Linear stability analysis showed that the consideration of the power 
output of a preceding vehicle could improve traffic flow stability. 
Montanaro et al. put forward an extended CACC algorithm, under 
which the communication was asymmetrical (10). The objective of 
the algorithm was to make the controlled vehicle attain the velocity 
of the leading vehicle and the predetermined gap. Ge and Orosz 
performed a vehicle dynamic with delayed acceleration feedback 
of a CACC platoon system (11).

Field tests of the platooning behavior of CACC-enabled vehicles 
were reported. Safe Road Trains for the Environment (SARTRE)  
had developed and successfully demonstrated a solution that involved 
a platoon of vehicles led by a professionally driven truck on a free-
way segment in a mixed traffic environment (12). The PATH program 
integrated the V2V communication capability into the ACC system 
and conducted an experiment of longitudinal motion control of eight 
vehicles on a closed highway segment (13). Relevant field tests of 
the CACC concept can also be found elsewhere (14–18). Because of 
safety and expenditure concerns (e.g., ITS infrastructure availabil-
ity, administrative issues, and budgetary constraints), a field experi-
ment of the CACC algorithm has been restricted to an isolated test 
environment and experienced difficulties in scalability.

Compared with a field experiment, simulation is an effective way 
to scale up the CACC platooning behavior, as well as test the near-
future deployment strategies. Few studies approaching CACC from 
the simulation perspective have been reported. Lee et al. assessed 
the potential benefits for mobility and safety under a wide range of 
traffic scenarios with three types of platoon-joining methods (i.e., 
rear, front, and cut-in join) (5). It was concluded that at a market 
penetration of 30%, the promising mobility benefits of CACC 
started to show and that a 0.9-s time headway was better than a 0.6-s 
time headway, according to the surrogate safety assessment model. 
Arnaout and Bowling constructed a simulation test bed to evaluate 
three different CACC deployment strategies: (a) no CACC vehicle, 
(b) CACC vehicles scattered on all lanes, and (c) CACC vehicles 

with priority access to a high-occupancy-vehicle (HOV) lane in 
mixed traffic (19). The authors concluded that the great potential 
benefits of CACC could be realized by placing a CACC vehicle 
on an HOV lane when the market penetration was below 40%; the 
benefits of CACC in mobility improvement could be realized even 
in the absence of CACC–HOV dedicated lanes when the market 
penetration was above 40%.

Multiobjective Optimization

MOOP is the selection of the best solutions concerning multiple con-
flicting objectives from a set of equally good solutions that consti-
tute a Pareto frontier. The MOOP method has been proposed to deal 
with complex optimization problems in transportation engineering 
[e.g., optimal highway asset management (20), prioritization transit 
stop Americans with Disability Act–compliant improvement (21), 
ramp metering (22), and evacuation routing (23)]. However, most 
of the reported MOOP methods linearly transformed the multi-
objective optimization problem into single-objective optimization 
(SOOP) through some user-defined parameters (e.g., weight fac-
tors) for simplification, resulting in multiobjective linear program-
ming (practically a SOOP). As Deb pointed out, a preference-based 
(e.g., with assigned weighted factors) MOOP could potentially 
overlook other optimal solutions, despite a change of preference 
vector (24). In MOOP, it is crucial to find a set of solutions spread-
ing as far as possible in the Pareto frontier before selecting one 
based on the high-level information. Evolution algorithms (EAs) 
are efficient for solving MOOP because a population of solutions—
instead of one—is evaluated in each iteration. The genetic algorithm 
(GA), being one of the widely used EAs, mimics the nature of the 
evolution principle, resulting in a stochastic search for the fittest 
(optimal) solutions.

In summary, most of the CACC studies have been approached 
from the electrical or mechanical engineering aspect, dealing with 
the low-level vehicle controller (e.g., throttle input, break input, and 
torque output). Only limited CACC field tests in mixed traffic con-
ditions have been conducted because of the various stated concerns. 
Traffic simulation is a cost-effective way to study the CACC algo-
rithm in large scale from a traffic engineering standpoint. Therefore, 
instead of assessing the proposed algorithm through string stability 
analysis, this paper investigates how consistently the MOOP algo-
rithm provides Pareto-optimal solutions; this strategy strikes a bal-
ance between all objectives while keeping the preferred objective 
(e.g., time headway deviation) minimal, yielding a stable optimal 
platoon. The formulation of a MOOP-based CACC (MOOP CACC) 
algorithm and the proof-of-concept test on an integrated simulation 
test bed are presented as well.

MethOdOLOgy

Platoon-Based Optimization algorithm

During each update interval t, the MOOP algorithm optimizes the 
decision variable (i.e., the acceleration ẍ) for each individual vehi-
cle for the next time interval t + 1. Each of the four components 
of the overall objective function is discussed in this section. Since 
the CACC is approached from a traffic engineering perspective, the 
low-level control and relevant electrical and mechanical aspects 
will not be covered. For clarity, the definition of headway in this 
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study is the “time headway between the rear bumper of a leading 
vehicle and the front bumper of a following vehicle.”

Target Time Headway Deviation Objective Function

One appealing benefit of CACC is its cooperative nature. How 
quickly CACC vehicles form a platoon and how much deviation 
each vehicle has from the target time headway are crucial. In addi-
tion, how swiftly a platoon adjusts and stabilizes under traffic dis-
turbance is important. Therefore, a target time headway deviation 
objective function is proposed that represents the difference between 
current time headway and the target time headway. This objective 
function considers only the absolute deviation of the targeting time 
headway; that factor means that either the positive or the negative 
value of deviation is the same in the view of the objective function. 
The safety issue concerning the positive deviation will be addressed 
in the subsequent unsafe objective function. The objective func-
tion of the targeted time headway deviation to be minimized can be 
expressed as Equation 1:
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where

 H = target time headway for each vehicle of platoon,
 hi (t + 1) = time headway of vehicle i at time interval t + 1, and
 n = total number of vehicles in platoon.

According to the equation of motion, the time headway of vehicle i  
at time interval (t + 1) can be expressed as Equation 2:
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where

 t = optimization interval for algorithm,
 xi(t) =  bumper-to-bumper (rear-to-front) distance of vehi-

cle i to its preceding vehicle at time interval t,
 x·i(t) = speed for vehicle i at time interval t,
 x·i−1(t) = speed for vehicle i − 1 at time interval t,
 ẍi(t + 1) = acceleration for vehicle i at time interval t + 1, and
 ẍi−1(t + 1) = acceleration for vehicle i − 1 at time interval t + 1.

Unsafe Condition Objective Function

Safety is vitally important in designing a vehicular longitudinal 
control algorithm. Maximization of safety also means the mini-
mization of a critical or unsafe condition. Wang et al. proposed a 
safety objective function in which the penalty was assessed expo-
nentially when the vehicle instantaneous gap was smaller than the 
predefined critical distance (6). For the consistency of the discus-
sion, the objective function of an unsafe condition is adopted and is 
to be minimized. Because a sufficiently safe distance also depends 
on the current speed of a pair of vehicles, the use of time headway is 
proposed; speed is already factored in, in the algorithm. With such a  
conversion, the objective function of an unsafe condition can be 
expressed as in Equation 3:
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where hi,0 is the minimum time headway defined by the driver of 
vehicle i and hi(t + 1) is the predicted time headway for vehicle i at 
time interval t + 1.

Vehicular Jitter Objective Function

Vehicular jitter is defined as the switch between acceleration and 
deceleration. The magnitude of the acceleration change should not  
be overlooked. For instance, even if a vehicle does not switch between 
acceleration and deceleration, a drastic change in acceleration or 
vice versa can result in riding discomfort. The discomfort thresh-
old is also a dependent of speed because a 2 m/s2 deceleration 
yields a significant difference in riding comfort at high speed (e.g., 
110 km/h) compared with at much lower speed (e.g., 40 km/h). 
Therefore, a coefficient beta that adjusts the acceleration effect  
in different vehicle speeds was adopted. The vehicular jitter to be 
minimized can be formulated as Equation 4:
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where β is the adjustment coefficient for speed and ẍcomfort is the 
comfortable acceleration threshold.

Fuel Consumption Objective Function

The fourth objective function to be minimized is fuel consump-
tion. Because of the microscopic nature of the CACC algorithm, 
an operation-level emission model is desired. Rakha et al. proposed 
a microscopic emission model that is capable of estimating accu-
mulated environmental effects (i.e., fuel consumption and carbon 
dioxide) for an individual vehicle (25). The instantaneous vehicle 
speed and acceleration rate are used for the models, yielding a  
second-by-second resolution estimation of the fuel consumption, as 
shown in Equation 5:
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Here, Le
i,j and Me

i,j are regression coefficients for the measure of 
effectiveness (e.g., fuel consumption). Note that the acceleration 
does not factor in slope effects (5).

Constraints

Besides the safety penalty in the objective function, additional 
constraints are required to ensure the safety performance of the 
algorithm. A minimal time headway constraint for each following 
vehicle is proposed. A safety factor is also incorporated for the 
circumstance in which communication is temporarily disrupted; 
this circumstance, however, will not be covered in this study. The 
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collision avoidance constraint for each vehicle is expressed as Equa-
tion 6. For the leader of the platoon, a simple time headway control 
algorithm whose main objective is to keep a safety time headway 
with the preceding vehicle as shown in Equation 7 is adopted under 
the assumption that the vehicle gap is detected by an onboard sensor 
and that the preceding vehicle is not a CACC vehicle.
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	 γ = additional safety factor for time headway,
 hi,min = user-defined minimal time headway for vehicle i,
 xi(t + 1) =  bumper-to-bumper distance for vehicle i to preceding 

vehicle at time interval t + 1, and
 x·i (t + 1) = speed for vehicle i at time interval t + 1.
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where hLV,min is the minimum time headway for a platoon leader.
CACC vehicles should be closely platooned together to fully uti-

lize the short time headway enabled by V2V communication. If the 
intraplatoon time headway exceeds a certain threshold, it may be 
more beneficial to split the original platoon into two and have each 
platoon conduct its own optimization. To fully explore the poten-
tial of CACC, a maximum time headway constraint is expected to 
make the platoon more effective and robust; that outcome can be 
expressed as Equation 8. For the leader of a platoon, however, the 
maximum time headway does not apply at this stage to provide 
more flexibility for the overall platoon during optimization and 
traffic disturbance.
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where hmax is the maximum time headway for the following vehicle.
The power train capability (e.g., acceleration and braking power) 

of a vehicle should also be considered to prevent the algorithm from 
yielding unrealistic accelerations. It is assumed that such power train 
information for each vehicle would be disseminated within the pla-
toon under the CV environment. In actual deployment on the roadway, 
it is very likely that a heterogeneous vehicle platoon is controlled, 
and the individual vehicle power train constraint can be expressed as 
Equation 9. Typically, a 3 m/s2 rate is applied as the maximum decel-
eration rate for field deployment and a 2 m/s2 of acceleration could be 
considered as the comfortable value (26).
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where ẍi,min is the minimum acceleration of vehicle i and ẍi,max is the 
maximum acceleration of vehicle i.

The last constraint is the roadway geometry constraint, including 
minimum and maximum allowable speeds. Only speed limits are 
considered in this study, as displayed in Equation 10. This infor-
mation is assumed to be disseminated via vehicle-to-infrastructure 
under the CV environment.

(10)min maxx x xi≤ ≤� � �

where x·min is the minimum allowable speed on a particular roadway 
and x·max is the maximum allowable speed on a particular roadway.

Because of the importance of safety, both time headway con-
straints have to be satisfied. The physical limitation of the power 
train should be a hard constraint as well. One may argue that the 
speed limit should be a soft constraint, but at this stage, it was pro-
grammed as a hard constraint to ensure that the initial point of the GA 
search was within the feasible region. In retrospect, the overall system 
to be optimized is shown below, with the decision variable ẍi(t + 1).
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genetic algorithm

Inspired by the principle of natural genetics and selection, GAs use 
this fundamental concept to perform optimization with minimal prob-
lem information (24). This study used the MATLAB built-in elitist 
multiobjective GA, which is a variant of the Nondominated Sorting 
GA II (NSGA-II) (27). The GA selects individuals on the basis of 
nondominated rank (i.e., fitness value) and the diversity of the indi-
vidual in the current generation. Despite the efficiency of the GA in 
solving multiobjective optimization, it does not guarantee a global 
optimal solution because of the probabilistic search. For that very 
reason, GA solutions are unlikely to be contained by local optima. 
While the GA is not able to guarantee an optimal solution, numer-
ous research efforts have proved that the GA produces “desirable” 
solutions, particularly in the case of handling a complicated search 
space. By tuning the GA parameters (e.g., population size and muta-
tion probability), one can further decrease the likelihood of a local 
optimal. In each iteration, 35% of the population from the Pareto 
frontier is selected for crossover and mutation for the next genera-
tion. After each iteration, a set of optimal solutions is obtained from 
the Pareto frontier, which is made up of nondominated and equally 
good solutions. From these solutions, one optimal solution based on 
the predetermined primary objective function (e.g., mobility, safety, 
and fuel consumption objective function) has to be chosen from the 
Pareto frontier. In this study, the 15th percentile of the time headway  



36 Transportation Research Record 2625

deviation objective in the entire set of Pareto-optimal solutions  
was selected as the optimal solution for each vehicle.

evaLuatiOn

Simulation test Bed

To demonstrate the effectiveness of the proposed MOOP CACC 
control, proof-of-concept tests were conducted in a microscopic sim-
ulation framework, which was made up of a Vissim and Vissim com-
ponent object model interface and a vehicle control algorithm built 
with the MATLAB multiobjective GA solver (28). The high-level 
framework architecture is shown in Figure 1. Vissim, a microscopic 
traffic simulation model, was used to mimic human drivers’ normal 
driving behavior. It is based on the Wiedemann 99 car-following 
model (29), which uses a set of parameters to mimic the most likely 
generic human drivers after proper calibration with field data (30). 
The parameter set used in this study has been calibrated in another 
calibration study with multiple data sources to ensure the degree of 
realism. During each updating interval, instantaneous speed, accel-
eration, and gaps, along with other predefined parameters, were input 
into the MOOP CACC algorithm. The output of the algorithm was 
the optimal acceleration for the next time interval for each vehicle 
in a platoon. A hypothetical 14.5-km freeway segment with one lane 
was used to conduct the simulation with the following assumptions:

•	 V2V communication is perfect, with no packet drops and radio 
interference.

•	 CACC platoon to be optimized is composed of CACC vehicles 
only.

•	 Homogeneous vehicles are assumed (e.g., same acceleration 
threshold and same vehicle length).

•	 Vehicle model is excluded; input to the plant (i.e., intended 
acceleration) equals the output (realized acceleration).

•	 Leader of the platoon operates under relaxed maximum time 
headway constraints, allowing more flexible reactions to the preceding  
non-CACC vehicle.

•	 Driving behavior parameters from a calibrated Vissim network 
located on Interstate Highway 66 in Fairfax County, Virginia, are 
assumed as a subset to represent a human driver.

experiment design

A human-driven vehicle was placed on the network, followed by a 
platoon made up of five CACC-equipped vehicles. With the feasible 

range of predetermined time headway, five CACC vehicles were 
set with randomized desired speeds around the speed limit. After 
traveling a predetermined distance (i.e., 1.2 km), all CACC vehicles 
received a command to form a platoon. The simulation resolution 
was set to 10 steps per second, which means Vissim computes the 
vehicular behavior every 0.1 s. The MOOP algorithm computed 
the optimal acceleration for each individual vehicle in the platoon 
and updated the acceleration rates every 0.5 s. The parameters used 
are summarized in Table 1. Two types of experiments were con-
ducted: (a) validation of the MOOP CACC compared with other 
vehicle algorithms and (b) analysis of the output from the MOOP 
CACC and SOOP CACC algorithms with the same set of objective 
functions.

The CACC vehicle platoon was set to follow the non-CACC vehi-
cle, whose speed profile was predetermined, as shown in Figure 2. 
The predetermined speed profile of the non-CACC leading vehicle is 
used only to provide a controlled scenario in which the performance 
of different controllers could be compared. A CACC vehicle knows 
only the instantaneous speed of the non-CACC leading vehicle rather 
than the complete speed profile. The reactions for the following CACC 
vehicles were observed and analyzed.

Five vehicle algorithms were tested: (a) human driver [cali-
brated Wiedemann 99 model (29)], (b) CACC algorithm proposed by 
Lee et al. with discrete acceleration rates [fixed value (FV) CACC] 
(5), (c) proposed MOOP CACC with a 1.4-s target time headway,  
(d) proposed MOOP CACC with a 0.9-s target time headway, and 
(e) proposed MOOP CACC with a 0.6-s target time headway.

results

The platoon behavior is shown in Figure 3. Compared with that of 
human drivers, the speed change of the MOOP CACC was more 

FIGURE 1  Simulation framework.

TABLE 1  Simulation Parameters

Parameter Value Parameter Value

H 0.6, 0.9, or 1.4 s hLV,min 1.7 s

hi,max 2.1 s hi,min 0.4, 0.6, or 1.0 s

hi,0 1.0 s ẍcomfort 1.0 m/s2

ẍi,min −3 m/s2 ẍi,max 2 m/s2

ẋmax 35 m/s ẋmin 21 m/s

β 1 γ 1.1
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responsive to the leading vehicle with minimal delay, indicating that 
the CACC vehicles were able to maintain a coherent speed profile. 
It was also seen that the first vehicle in the CACC platoon exhibited 
relatively greater reaction to its preceding vehicle, but it helped to 
dampen the shock wave propagation to the rest of the platoon.

Figure 4a shows that all three MOOP CACC algorithms con-
verged to the target time headway and maintained minimal devia-
tions despite traffic disturbance. The mean time headway deviation 
of the FV CACC algorithm was 0.89 s, and human drivers exhibited 
a time headway deviation as high as 3.86 s. Figure 4b shows that 
the human driver platoon had the highest unsafe objective function 
value, 6.87; whereas the MOOP CACC yielded, at worst, an objec-
tive function value of 0.182. For the jitter objective function, the 
human driver was the lowest of all algorithms, as shown in Figure 4c.  

It is understandable that the simulated human driving behaviors 
achieved greatest riding comfort. However, the mean of the MOOP 
CACC algorithm with a 1.4-s time headway was only 2% higher 
than human drivers in regard to the jitter objective function value. 
For the fuel consumption in Figure 4d, the analysis of variance 
test showed that the means of the MOOP CACC with a 0.6-s and 
0.9-s time headway were statistically identical, and both were 
different from the other three algorithms (i.e., human, FV CACC, 
and MOOP CACC with 1.4-s time headways). The MOOP CACC 
with a 1.4-s target time headway has the lowest mean of fuel 
consumption.

To further investigate the performance of MOOP, four scenarios 
with different objective functions were designed to compare the 
performance of SOOP and MOOP (with a 0.9-s intraplatoon time  
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headway) under the same traffic conditions and constraints. MOOP-1 
and MOOP-2 represented that the solution with the 15th and 50th 
percentile optimal time headway deviation values were selected from 
the Pareto frontier in each optimization, respectively. The SOOP-1 
was the optimization performed on the time headway deviation 
objective function only. Similarly, the objective function of SOOP-2 
dealt with the unsafe condition objective function only.

To evaluate the statistical significance of difference of all objec-
tive values of the tested algorithms, the analysis of variance test with 
the post hoc Tukey’s method was conducted (31). It is considered to 
be the most powerful test when all pairwise comparisons are desired 
(32). With a 95% confidence interval for all groups of objective func-
tion values, the Tukey’s method results are shown in Table 2; mean 
values that do not share a letter (i.e., group identifier) are consid-
ered to be significantly different. For the time headway deviation 
objective function, the value of SOOP-2 was statistically different 
from three of its peers. For the unsafe condition objective function, 
MOOP-2 and SOOP-1 were the same, while the value of MOOP-1 
and SOOP-2 belonged to two different groups. With respect to jitter, 
the objective function values were significantly different. For the 
fuel consumption objective function values, MOOP-1, MOOP-2, 
and SOOP-2 belonged to separate groups, while SOOP-1 could be 
considered to share the same group with either MOOP-1 or MOOP-2.

Each of the objective function values was calculated and plot-
ted in box plots in Figure 5. As seen, the objective function values 
have more outliers in both SOOP scenarios. SOOP-2 outperformed 
the two MOOPs in minimizing the unsafe condition; that finding is 
reasonable because the objective function was designed solely to 
minimize the unsafe condition. However, the standard deviation of 
SOOP-2 was 0.28 s more than that of MOOP-1 with respect to the 
target time headway deviation and approximately 97% higher in the 
unsafe condition than MOOP-1. Similarly, SOOP-1 experienced a 
higher standard deviation in objective function values by indicating 
a less stable condition in the platoon. In addition, SOOP-1 seemed 
to perform worse than SOOP-2 in comparing the mean values. 

TABLE 2  Tukey Pairwise Comparison Tests

Algorithm
Time Headway 
Deviation

Unsafe 
Condition Jitter

Fuel 
Consumption

MOOP-1 A B C B

MOOP-2 A A A A

SOOP-1 A A B A, B

SOOP-2 B C D C
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FIGURE 5  Box plot comparison for objective function values: (a) platoon time headway deviation objective values, (b) platoon 
unsafe objective function values, (c) platoon jitter objective function values, and (d) platoon instantaneous fuel consumption 
objective function values.
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However, the standard deviation of SOOP-1 was only half that of 
SOOP-2; that finding indicates that SOOP-1 performed more con-
sistently and better than SOOP-2. Hence, both MOOP algorithms 
appeared to have better Pareto optimality. One can also conclude 
that MOOP-1 performed better than MOOP-2 with most of the aspects 
considered.

COnCLuSiOn

An innovative multiobjective-optimization-based cooperative 
adaptive cruise control (MOOP CACC) algorithm was proposed in 
this paper. To systematically evaluate the proposed method from a 
traffic engineering perspective, a simulation framework was devel-
oped by integrating Vissim, MATLAB, and the Vissim component 
object model interface. According to the simulation test results, the 
target time headway deviations of all MOOP CACC controls were 
on average 0.96 s less than that of the human driver, which was 
simulated by the calibrated Wiedemann 99 car-following models in 
Vissim. The speed disturbance caused by human drivers was also 
successfully dampened.

In addition, the variants of the MOOP CACC algorithms (e.g., 1.4-, 
0.9-, and 0.6-s target time headway) were tested. Simulation results 
showed that MOOP CACC with a 0.9-s target time headway margin-
ally yielded the better performance in targeted time headway devia-
tion and instantaneous fuel consumption. However, a 0.6-s MOOP 
CACC is expected to provide a greater increase in the overall carrying 
capacity than the 0.9-s case. Compared with a previously developed 
CACC algorithm (i.e., FV CACC), the MOOP CACC exceeded 
the FV CACC in all four aspects: a 98% reduction in time headway 
deviation, a 93% reduction in the unsafe condition objective function 
value, a 42% reduction in the jitter objective function value, and a 
33% reduction in instantaneous fuel consumption.

Furthermore, the comparison between the MOOP CACC and the 
SOOP CACC showed that MOOP kept a good balance among all 
objectives. On the contrary, both SOOP CACCs generated higher 
standard deviations: 0.28 s higher in target time headway deviation 
and approximately 97% higher in unsafe condition, respectively. It 
was also observed that the SOOP CACC showed difficulties in bal-
ancing the overall system objective functions, and it was likely sub-
jected to bias or personal preference, which could limit the search 
space of the optimization.

Future research will be focused on addressing the assumptions 
made in the proof-of-concept test. First, the perfect vehicle-to-vehicle  
communication is unlikely in the real-world scenario. A fail-safe 
algorithm dealing with an imperfect communication environment 
should be developed. Second, the algorithm should be evaluated  
along with a wireless communication simulator with a more realistic 
updating interval (e.g., higher than 10 Hz). Third, more comparisons 
with other vehicle longitudinal control algorithms in networkwide 
performance are desired. Last, the scalability of the MOOP CACC 
algorithm needs to be further tested in a larger network under mixed 
traffic conditions. In addition, a decentralized deployment schema 
will be explored.
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